INTERRELATION BETWEEN THE PARAMETERS OF
SOLIDIFICATION IN A CYLINDER WITH AXIAL

AND RADIAL-AXIAL HEAT TRANSFER

F. I. Shved and D. A. Soskov

UDC 536.248 .2

A method is described of calculating the temperature field in the crystallization zone (twophase zone) which moves within a cylinder along the axis.

Let us assume an infinitely long cylindrical specimen of a multicomponent alloy which can be moved steadily in a temperature field where the two-phase liquid-solid zone bounded by two planes perpendicular to the cylinder axis will continuously move in the direction of this axis. There are two possibilities here: 1) heat flows into the two-phase zone through the liquid metal from which it is carried away into the solid along the specimen axis only (axial heat flow); 2) part of the heat flows into the two-phase region or is carried away from it through the lateral surface (radial-axial heat flow).

As basic parameters of the solidification process we will take the linear velocity of motion and the elongation of the two-phase zone, both together determining the length of time a metal remains in the twophase state, i.e. the actual length of crystallization time.

We will mark out in the two-phase zone a small unit area perpendicular to the cylinder axis and we will analyze the change of heat flux through it due to displacement by an infinitesimal distance dx . The corresponding differential equation of heat transfer in a quasisteady process is

$$
\begin{equation*}
a^{*} \frac{\partial^{2} t}{\partial x^{2}}=\frac{\partial t}{\partial \tau} \tag{1}
\end{equation*}
$$

For a single-phase medium not containing heat sources, $a=\lambda / \gamma c$. In our case latent heat of crystallization is given off in the two-phase zone and this brings about an increase in the apparent specific heat of the metal. We will assume that the latent heat is given off at a uniform rate throughout the crystallization range of temperatures, so that

$$
\begin{equation*}
c_{0}^{*}=c+\frac{L}{t_{\mathrm{i}}-t_{\mathrm{f}}}, \tag{a}
\end{equation*}
$$

while

$$
\begin{equation*}
a_{0}^{*}=\frac{\lambda}{\gamma\left[c+L /\left(t_{\mathrm{i}}-t_{\mathrm{f}}\right)\right]} . \tag{b}
\end{equation*}
$$

Inserting $\partial \mathrm{x}=\mathrm{w} \partial \mathrm{t}$ in (1) and replacing a^{*} by a_{0}^{*}, we obtain for the axial heat flux:

$$
\begin{equation*}
a_{0}^{*} \frac{\partial^{2} t}{\partial x^{2}}=w \frac{\partial t}{\partial x} \tag{2}
\end{equation*}
$$

Using conditions $x=0, t=t_{i}, \partial t / \partial x=G_{i}$ and $x=\delta, t=t_{f}, \partial t / \partial x=G_{f}$, we can write

$$
\begin{equation*}
t=t_{\mathrm{i}}+G_{\mathrm{i}} \frac{a_{0}^{*}}{w}\left[\exp \left(\frac{w}{a_{0}^{*}} x\right)-1\right], \tag{3}
\end{equation*}
$$

Scientific-Research Institute of Metallurgy, Chelyabinsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 19, No. 1, pp. 106-109, July, 1970. Original article submitted June 27, 1969.

> © 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17 th Street, New York, N. Y. 10011 . All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

Fig. 1. Comparison between the calculated (δ^{\prime}) and the actual (δ) width of a two-phase region (mm).

Fig. 2. The time a metal remains in the two-phase state $\tau_{\mathrm{cr}}(\mathrm{sec})$, as a function of the calculated parameter $a_{\mathbf{r}}^{*} \tau_{\mathrm{cr}}\left(\mathrm{cm}^{2}\right)$ and of the rate at which the specimen is lowered into a refrigerator. w_{0} : 1) $0.8 \cdot 10^{-3} \mathrm{~cm} / \mathrm{sec}$; 2) $3.0 \cdot 10^{-3} \mathrm{~cm} / \mathrm{sec}$; 3) $16.7 \cdot 10^{-3} \mathrm{~cm} / \mathrm{sec}$; 4) $53.3 \cdot 10^{-3} \mathrm{~cm} / \mathrm{sec}$.

Fig. 3. Effect of the lowering rate $\mathrm{w}_{0}(\mathrm{~cm} / \mathrm{sec})$ on the apparent value of thermal diffusivity $a_{\mathrm{r}}^{*}(\mathrm{~cm} / \mathrm{sec})$ and on the coefficient $\alpha=\mathrm{Q} / \mathrm{Q}_{0}=\left(a_{0}^{*} / a_{\mathrm{r}}^{*}\right)-1$.

$$
\begin{align*}
\delta & =\frac{t_{\mathrm{i}}-t_{\mathrm{f}}}{G_{\mathrm{i}}-G_{\mathrm{f}}} \ln \frac{G_{\mathrm{f}}}{G_{\mathrm{i}}}, \tag{4}\\
\tau_{\mathrm{cr}} & =\frac{\ln \left(G_{\mathrm{f}} / G_{\mathrm{i}}\right)}{\left(G_{\mathrm{i}}-G_{\mathrm{f}}\right)^{2} a_{0}^{*}}\left(t_{\mathrm{i}}-t_{\mathrm{f}}\right)^{2} . \tag{5}
\end{align*}
$$

The appearance of a radial component of heat flux in the two-phase zone as well as the release of latent heat can be accounted for if the apparent values of specific heat and thermal diffusivity are modified accordingly:

$$
\begin{equation*}
c_{\mathrm{r}}^{*}=c+\frac{L}{t_{\mathrm{i}}-t_{\mathrm{f}}}+\frac{Q}{t_{\mathrm{i}}-t_{\mathrm{f}}} \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{\mathrm{r}}^{*}=\lambda / \gamma\left(c+\frac{L}{t_{\mathbf{i}}-t_{\mathrm{f}}}+\frac{Q}{t_{\mathrm{i}}-t_{\mathrm{f}}}\right) . \tag{d}
\end{equation*}
$$

Replacing a_{0}^{*} by a_{r}^{*} in (3), (4), (5) will allow us to use these equations also for the radial-axial case. It follows from a transformation of (c) and (d) that

$$
\begin{equation*}
Q=\left(a_{0}^{*} / a_{\mathrm{r}}^{*}-1\right)\left[c\left(t_{\mathrm{i}}-t_{\mathrm{f}}\right)+L\right] \tag{6}
\end{equation*}
$$

Since $Q_{0}=c\left(t_{i}-t_{f}\right)+L$ represents the total heat of crystallization, the coefficient $\alpha=\left(a_{0}^{*} / a_{\mathrm{r}}^{*}\right)-1$ characterizes the contribution of lateral heat flow during solidification. Through the lateral surface of the cylinder, heat is brought into the two-phase zone of the cylinder when $\alpha>0(Q>0)$ and heat is carried away from it when $\alpha<0$. With $\alpha=0\left(a_{\mathrm{r}}^{*}=a_{0}^{*}\right)$ there is no heat flow across the lateral surface.

These relations were verified experimentally in a laboratory using a resistance furnace with a graphite heater and with a mechanism for lowering the molten steel specimen from the hot zone inside the furnace into a refrigerator at a rate which remained constant in each test but was varied from test to test between $0.5 \cdot 10^{-5} \mathrm{~m} / \mathrm{sec}$ and $50 \cdot 10^{-5} \mathrm{~m} / \mathrm{sec}$. The metal temperature during crystallization was measured with tungsten-rhenium thermocouples at four locations along the specimen height. From the thermograms thus obtained, the solidification process parameters δ and $\tau_{c r}$ were found and then compared (Figs. 1, 2) with the values of δ^{\prime} and $a_{r}^{*} \tau_{c r}$, which had been calculated by Eqs. (4) and (5). The slopes of the straight lines in Fig. 2 determine the magnitudes of coefficients a_{r}^{*} and α as functions of W_{0} (Fig. 3). \dagger $\dagger a^{*}$ was calculated for steel with $0.5-0.7 \%$ carbon with $\lambda=23.2 \mathrm{~J} / \mathrm{m} \cdot \sec \cdot \operatorname{deg} \mathrm{K}, \gamma=7.5 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, $\mathrm{c}=837 \mathrm{~J} / \mathrm{kg} \cdot \operatorname{deg} \mathrm{K}, \mathrm{L}=272 \mathrm{~kJ} / \mathrm{kg}, \mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{f}}=60^{\circ} \mathrm{K}$.

Here $\alpha \rightarrow(-1)$ corresponds to high values of w_{0}, while negligibly less heat flows axially than radially
We observe an entirely definite correlation between the mode of heat flow and the structure of the metal: the dendrites are oriented parallel to the specimen axis when $\alpha>-0.9$, but they are oriented radially when $\alpha<-0.9$.

NOTATION

```
t temperature;
x distance along the cylinder axis;
\tau time;
a, a
    radial-axial heat flow respectively;
\lambda thermal conductivity;
c, c* specific heat, apparent specific heat;
\gamma density;
L
ti, tf
Gi,G
Q specific heat transfer through the lateral surface of a two-phase zone;
\delta, 片 actual and calculated elongation;
w velocity of a moving two-phase zone;
Tcr duration of the two-phase state of a metal;
wolol
```

